728x90 반응형 Object Detection 728x90 반응형 3 mAP 계산 (mean Average Precision) for Object Detection, pose estimation mAP (mean Average Precision) 은 컴퓨터비전 분야인 object detection, 최근에는 pose estimation 분야에서도 모델 평가에 사용되는 지표다. 이를 이해하려면 precision 과 recall에 대해 알아야 하는데 머신러닝 수업에서 많이 들어봤을 것이다. ground truth \ prediction Positive Negative Positive True Positive Fasle Negative Negative False Positive True Negative $$Precision = \frac{TP}{TP+FP}$$ $$Recall = \frac{TP}{TP+FN}$$ 즉 precision 은 옳다고 예측한 것들 중에 실제 옳은 것의 비율, recall은 .. 2022. 1. 15. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Abstract 포인트 클라우드는 중요한 기하학적 데이터 구조 유형입니다. 불규칙한 형식으로 인해 대부분의 연구자들은 이러한 데이터를 일반 3D voxel 그리드 또는 이미지 모음으로 변환합니다. 그러나 이로 인해 데이터가 불필요하게 방대해지고 문제가 발생합니다. 이 논문에서 우리는 입력 포인트의 순열 불변성을 잘 존중하는 포인트 클라우드를 직접 소비하는 새로운 유형의 신경망을 설계합니다. PointNet이라는 이름의 우리 네트워크는 객체 분류, 부분 분할에서 장면 의미 분석에 이르기까지 다양한 애플리케이션을위한 통합 아키텍처를 제공합니다. 간단하지만 PointNet은 매우 효율적이고 효과적입니다. 경험적으로, 그것은 동등한 수준의 강력한 성능을 보여줍니다. 이론적으로 우리는 네트워크가 학습 한 내용과 .. 2021. 3. 28. 논문 리뷰 Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving 링크: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8100174 분야: 3d 2017 저자: Xiaozhi Chen1, Huimin Ma1, Ji Wan2, Bo Li2, Tian Xia2 1Department of Electronic Engineering, Tsinghua University 2Baidu Inc. 참고: https://adioshun.gitbooks.io/paper-3d-object-detection-and-tracking/content/2017-multi-view-3d-object-detection-network-fo.. 2021. 3. 26. 이전 1 다음